

Notations

Kuan-Yu Chen (陳冠宇)

2019/03/06 @ TR-310-1, NTUST

Review

- Asymptotic notations

Definition [Big ‘‘oh’’]: $f(n) = O(g(n))$ (read as ‘‘ f of n is big oh of g of n ’’) iff (if and only if) there exist positive constants c and n_0 such that $f(n) \leq cg(n)$ for all $n, n \geq n_0$. \square

Definition: [Omega] $f(n) = \Omega(g(n))$ (read as ‘‘ f of n is omega of g of n ’’) iff there exist positive constants c and n_0 such that $f(n) \geq cg(n)$ for all $n, n \geq n_0$. \square

Definition: [Theta] $f(n) = \Theta(g(n))$ (read as ‘‘ f of n is theta of g of n ’’) iff there exist positive constants c_1, c_2 , and n_0 such that $c_1g(n) \leq f(n) \leq c_2g(n)$ for all $n, n \geq n_0$. \square

$o(g(n)) = \{f(n) : \text{for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \leq f(n) < cg(n) \text{ for all } n \geq n_0\}.$

$\omega(g(n)) = \{f(n) : \text{for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \leq cg(n) < f(n) \text{ for all } n \geq n_0\}.$

Properties.

- Transitivity

$f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$ imply $f(n) = \Theta(h(n))$

$f(n) = O(g(n))$ and $g(n) = O(h(n))$ imply $f(n) = O(h(n))$

$f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$ imply $f(n) = \Omega(h(n))$

$f(n) = o(g(n))$ and $g(n) = o(h(n))$ imply $f(n) = o(h(n))$

$f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$ imply $f(n) = \omega(h(n))$

Properties..

- Reflexivity

$$\begin{aligned}f(n) &= \Theta(f(n)) \\f(n) &= O(f(n)) \\f(n) &= \Omega(f(n))\end{aligned}$$

- Symmetry

$$f(n) = \Theta(g(n)) \text{ if and only if } g(n) = \Theta(f(n))$$

- Transpose symmetry

$$\begin{aligned}f(n) &= O(g(n)) \text{ if and only if } g(n) = \Omega(f(n)) \\f(n) &= o(g(n)) \text{ if and only if } g(n) = \omega(f(n))\end{aligned}$$

Properties...

- Reflexivity

$$\begin{aligned}f(n) &= \Theta(f(n)) \\f(n) &= O(f(n)) \\f(n) &= \Omega(f(n))\end{aligned}$$

$$\begin{aligned}f(n) = O(g(n)) &\quad \text{is like } a \leq b, \\f(n) = \Omega(g(n)) &\quad \text{is like } a \geq b, \\f(n) = \Theta(g(n)) &\quad \text{is like } a = b, \\f(n) = o(g(n)) &\quad \text{is like } a < b, \\f(n) = \omega(g(n)) &\quad \text{is like } a > b.\end{aligned}$$

- Symmetry

$$f(n) = \Theta(g(n)) \text{ if and only if } g(n) = \Theta(f(n))$$

- Transpose symmetry

$$\begin{aligned}f(n) = O(g(n)) \text{ if and only if } g(n) &= \Omega(f(n)) \\f(n) = o(g(n)) \text{ if and only if } g(n) &= \omega(f(n))\end{aligned}$$

Standard Notations.

- Monotonicity
 - A function $f(n)$ is ***monotonically increasing*** if $m \leq n$ implies $f(m) \leq f(n)$
 - It is ***monotonically decreasing*** if $m \leq n$ implies $f(m) \geq f(n)$
 - A function $f(n)$ is ***strictly increasing*** if $m < n$ implies $f(m) < f(n)$
 - A function $f(n)$ is ***strictly decreasing*** if $m < n$ implies $f(m) > f(n)$

Standard Notations..

- Floors and Ceilings
 - For any **real number** x
 - We denote the **greatest integer** less than or equal to x by $\lfloor x \rfloor$
The floor of x
Example: $x = 2.7, \lfloor x \rfloor = \lfloor 2.7 \rfloor = 2$
 - We denote the **least integer** greater than or equal to x by $\lceil x \rceil$
The ceiling of x
Example: $x = 2.7, \lceil x \rceil = \lceil 2.7 \rceil = 3$
 - For all real x
$$x - 1 < \lfloor x \rfloor \leq x \leq \lceil x \rceil < x + 1$$
 - For any integer x
$$\left\lfloor \frac{x}{2} \right\rfloor + \left\lceil \frac{x}{2} \right\rceil = x$$

Standard Notations...

- For any real number $x \geq 0$ and integers $a, b > 0$

$$\left\lceil \frac{\left\lceil \frac{x}{a} \right\rceil}{b} \right\rceil = \left\lceil \frac{x}{ab} \right\rceil$$

$$\left\lceil \frac{\left\lfloor \frac{x}{a} \right\rfloor}{b} \right\rceil = \left\lfloor \frac{x}{ab} \right\rfloor$$

$$\left\lceil \frac{a}{b} \right\rceil \leq \frac{a + (b - 1)}{b}$$

$$\left\lceil \frac{a}{b} \right\rceil \geq \frac{a - (b - 1)}{b}$$

Appendix.

- For any real number $x \geq 0$ and integers $a, b > 0$, we want to

proof that $\left\lceil \frac{\left\lceil \frac{x}{a} \right\rceil}{b} \right\rceil = \left\lceil \frac{x}{ab} \right\rceil$

- Let $k = \left\lceil \frac{x}{a} \right\rceil$

- We can get $k - 1 < \frac{x}{a} \leq k \Rightarrow \frac{k-1}{b} < \frac{x}{ab} \leq \frac{k}{b}$

- Consequently, $\left\lceil \frac{x}{ab} \right\rceil \leq \left\lceil \frac{k}{b} \right\rceil$

- Suppose that $\left\lceil \frac{x}{ab} \right\rceil < \left\lceil \frac{k}{b} \right\rceil$, then there must be an integer l

- $\left\lceil \frac{x}{ab} \right\rceil \leq l < \left\lceil \frac{k}{b} \right\rceil \Rightarrow \frac{x}{ab} \leq l < \frac{k}{b} \Rightarrow \frac{x}{a} \leq bl < k \Rightarrow \left\lceil \frac{x}{a} \right\rceil \leq bl < k$

- So, $k = \left\lceil \frac{x}{a} \right\rceil \leq bl < k \rightarrow \left\lceil \frac{x}{a} \right\rceil = l$

- Thus, $\left\lceil \frac{x}{ab} \right\rceil = \left\lceil \frac{k}{b} \right\rceil = \left\lceil \frac{\left\lceil \frac{x}{a} \right\rceil}{b} \right\rceil$

Appendix..

- For any real number $x \geq 0$ and integers $a, b > 0$, we want to proof that $\left\lceil \frac{a}{b} \right\rceil \leq \frac{a+(b-1)}{b}$
 - Let $a = kb + r$
 - $\left\lceil \frac{a}{b} \right\rceil = \left\lceil \frac{kb+r}{b} \right\rceil$
 - $\frac{a+(b-1)}{b} = \frac{kb+r+b-1}{b} = \frac{(k+1)b+(r-1)}{b}$
 - If $r = 0$
 - $\left\lceil \frac{a}{b} \right\rceil = \left\lceil \frac{kb+r}{b} \right\rceil = \left\lceil \frac{kb}{b} \right\rceil = k$
 - $\frac{a+(b-1)}{b} = \frac{(k+1)b+(r-1)}{b} = k + 1 - \frac{1}{b} = k + \left(1 - \frac{1}{b}\right)$
 - $\because \left(1 - \frac{1}{b}\right) \geq 0$
 - $\therefore \left\lceil \frac{a}{b} \right\rceil = k \leq k + \left(1 - \frac{1}{b}\right) = \frac{a+(b-1)}{b}$

Appendix...

- For any real number $x \geq 0$ and integers $a, b > 0$, we want to proof that $\left\lceil \frac{a}{b} \right\rceil \leq \frac{a+(b-1)}{b}$
 - Let $a = kb + r$
 - $\left\lceil \frac{a}{b} \right\rceil = \left\lceil \frac{kb+r}{b} \right\rceil$
 - $\frac{a+(b-1)}{b} = \frac{kb+r+b-1}{b} = \frac{(k+1)b+(r-1)}{b}$
 - If $1 \leq r < b$
 - $\left\lceil \frac{a}{b} \right\rceil = \left\lceil \frac{kb+r}{b} \right\rceil = k + 1$
 - $\frac{a+(b-1)}{b} = \frac{(k+1)b+(r-1)}{b} = (k + 1) + \frac{r-1}{b}$
 - $\because \frac{r-1}{b} \geq 0$
 - $\therefore \left\lceil \frac{a}{b} \right\rceil = k + 1 \leq (k + 1) + \frac{r-1}{b} = \frac{a+(b-1)}{b}$

Standard Notations...

- Modular Arithmetic
 - For any integer a and any positive integer n , the value $a \bmod n$ is the **remainder** (or **residue**) of the quotient $\frac{a}{n}$
$$a \bmod n = a - n \left\lfloor \frac{a}{n} \right\rfloor$$
$$0 \leq a \bmod n < n$$
 - If $(a \bmod n) = (b \bmod n)$
 - $a \equiv b \pmod{n}$
 - a is **equivalent** to b , modulo n

Standard Notations....

- Polynomials
 - Given a nonnegative integer d , a *polynomial in n of degree d* is a function $p(n)$ of the form

$$p(n) = \sum_{i=0}^d a_i n^i$$

- a_0, a_1, \dots, a_d are the coefficients
- $a_d \neq 0$
- We say that a function $f(n)$ is *polynomially bounded* if $f(n) = O(n^k)$ for some constant k

Standard Notations.....

- Exponentials
 - For all real $a > 0$, m , and n , we have the following identities

$$\begin{aligned}a^0 &= 1, \\a^1 &= a, \\a^{-1} &= 1/a, \\(a^m)^n &= a^{mn}, \\(a^m)^n &= (a^n)^m, \\a^m a^n &= a^{m+n}.\end{aligned}$$

Standard Notations.....

- Logarithms
 - We shall use the following notations:

$$\begin{aligned}\lg n &= \log_2 n && \text{(binary logarithm) ,} \\ \ln n &= \log_e n && \text{(natural logarithm) ,} \\ \lg^k n &= (\lg n)^k && \text{(exponentiation) ,} \\ \lg \lg n &= \lg(\lg n) && \text{(composition) .}\end{aligned}$$

- For all real $a > 0, b > 0, c > 0$, and n ,

$$\begin{aligned}a &= b^{\log_b a} , \\ \log_c(ab) &= \log_c a + \log_c b , \\ \log_b a^n &= n \log_b a , \\ \log_b a &= \frac{\log_c a}{\log_c b} , \\ \log_b(1/a) &= -\log_b a , \\ \log_b a &= \frac{1}{\log_a b} , \\ a^{\log_b c} &= c^{\log_b a} ,\end{aligned}$$

Recursive Algorithms.

- The recursive mechanisms are extremely powerful, because they often can express a complex process very clearly
- Recursive functions can be categorized into three classes
 - Direct Recursion
 - The function may call itself before it is done
 - Indirect Recursion
 - The function may call other functions that again invoke the calling function
 - Tail Recursion
 - The function may call itself at the end of the function
 - A special case of direct recursion

Recursive Algorithms..

Direct Recursion

```
1 function A()  
2 {  
3     ...  
4     A();  
5     ...  
6 }  
7 ...  
8 }  
9
```

A diagram showing a code snippet for direct recursion. A green curved arrow starts from the closing brace of the function body and points back to the 'A();' call, indicating a direct recursive call.

Indirect Recursion

```
1 function A()  
2 {  
3     ...  
4     B();  
5     ...  
6 }  
7 ...  
8 }  
9  
10 function B()  
11 {  
12     ...  
13     A();  
14     ...  
15 }  
16 ...  
17 }
```

A diagram showing a code snippet for indirect recursion. It consists of two functions, A and B. Function A calls function B, and function B calls function A, forming a cycle. A red curved arrow points from the closing brace of function A's body to the 'A();' call in function B, and another red curved arrow points from the closing brace of function B's body back to the 'A();' call in function A.

Tail Recursion

```
1 function A()  
2 {  
3     ...  
4     A();  
5 }  
6
```

A diagram showing a code snippet for tail recursion. The function A ends with a recursive call to itself ('A();'), which is highlighted by a blue curved arrow pointing from the closing brace of the function body back to the 'A();' call.

calling cycle

Recursive Algorithms...

- Let's make a comparison

Recursion	Non-Recursion
Codes are more compact	Codes are complicated
Easy to understand	Hard to read
Time-consuming	Time-saving

Questions?

kychen@mail.ntust.edu.tw